Leonardo Senatore (Stanford University)

# The Effective Field Theory of Inflation and Multifield Inflation

## Large non-Gaussianities

• Standard slow-roll infl.: very Gaussian

Maldacena, JHEP,2003 Acquaviva et al, Nunl.Phys. B,2003

$$\frac{\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle}{\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle^{3/2}} \simeq f_{\rm NL} \langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \rangle^{1/2} \sim 10^{-7}$$

- $f_{\rm NL} \sim 10^{-2}$

• DBI inflation

Alishahiha, Silverstein and Tong, Phys.Rev.D70:123505,2004

• Large non-Gaussianities

 $f_{\rm NL} \sim 10^2$ 

**Currently Detectable!** 

Shape of non-Gaussianities

$$\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \rangle = (2\pi)^3 \delta^{(3)} \left(\sum_i \vec{k}_i\right) F\left(\frac{k_2}{k_1}, \frac{k_3}{k_1}\right)$$

• What are the generic signatures?



### The Effective Field Theory of Inflation

with C. Cheung, P. Creminelli, L. Fitzpatrick, J. Kaplan JHEP 0803:014,2008

### The Effective Field Theory

Inflation: Quasi dS phase with a broken time-translation.

Inflation: theory of the Goldstone.  $\pi \rightarrow \pi - \delta t$ 

$$S_{\pi} = \int d^4x \,\sqrt{-g} \left[ M_{\rm Pl}^2 \dot{H} (\dot{\pi}^2 - (\partial_i \pi)^2) + M_2^4 \left( \dot{\pi}^2 + \dot{\pi}^3 - \dot{\pi} (\partial_i \pi)^2 \right) - M_3^4 \dot{\pi}^3 + \dots \right]$$

• Analogous of the (more important!) Chiral Lagrangian for the Pions S.Weinberg PRL 17, 1966  $\pi \sim \delta \phi$ 

- All single field models are unified (Ghost Inflation, DBI inflation, ...); prove theorems:
  Theorem: In single clock models, only Inflation can produce more than 10 e-foldings of scale invariant fluct.
- What is forced by symmetries and large signatures are explicit:
  - The spatial kinetic term: pathologies for :  $\dot{H} > 0$  add  $\delta E^2 \Rightarrow$

with Baumann and Zaldarriaga **1101:3320** [hep-th]

$$\left(\partial_i^2 \pi\right)^2 \quad \Rightarrow \quad w < -1$$

with Creminelli, Luty and Nicolis, JHEP 0612

• Connection between  $c_s$  and Non-Gaussianities:  $\dot{\pi}^2 - c_s^2 (\partial_i \pi)^2$ , NG:  $f_{NL}^{\text{non-loc.}} \sim \frac{1}{c_s^2}$ • Large interactions are allowed  $\Longrightarrow$  Large non-Gaussianities!  $\dot{\pi} (\nabla \pi)^2$ 

### Large non-Gaussianites

with Smith and Zaldarriaga, JCAP1001:028,2010



### Let's look at the data



### $\sim$ No detection $\approx$

With Smith and Zaldarriaga, JCAP0909:006,2009 JCAP1001:028,2010

#### Optimal analysis of WMAP data (foreground template corrections) are ~ compatible with Gaussianity

Optimal limits on NG

 $-10 < f_{NL}^{local} < 74$  at 95% C.L. (-5 <  $f_{NL}^{local} < 59$  at 95% C.L.) Komatsu et al. WMAP 7yr

after combining with LSS Slosar *et al*. JCAP 0808:031, 2008

 $-214 < f_{NL}^{equil.} < 266 \quad at 95\% \text{ C.L.}$ -410 <  $f_{NL}^{orthog.} < 6 \quad at 95\% \text{ C.L.}$ 

Komatsu et al. WMAP 7yr



Friday, May 13, 2011

# (Optimal) Limits on the parameters of the Lagrangian $S_{\pi} = \int d^4x \sqrt{-g} \left[ M_{\rm Pl}^2 \dot{H} (\dot{\pi}^2 - (\partial_i \pi)^2) + M_2^4 (\dot{\pi}^2 + \dot{\pi}^3 - \dot{\pi} (\partial_i \pi)^2) - M_3^4 \dot{\pi}^3 + \dots \right]$

- Limits on  $f_{NL}$  's get translated into limits on the parameters
- For models not-very-close to de Sitter (like DBI):  $c_s$  ,  $\tilde{c}_3$



### With Smith and Zaldarriaga, **JCAP1001:028,2010**



- Close to de Sitter.  $d_1 \, \delta g^{00} \delta K_i^i$
- Dispertion relation:  $\omega^2 = c_s^2 k^2$

$$c_s^2 = d_1 \frac{H}{M} \ll 1$$



### With Smith and Zaldarriaga, JCAP1001:028,2010

- Close to de Sitter.  $d_2 \, \delta K_i^{i2}$  Dispertion relation:  $\omega^2 = (d_2 + d_3) \frac{k^4}{M^2}$



With Smith and Zaldarriaga, JCAP1001:028,2010

- Close to de Sitter.
- Negative  $c_s^2$  due to  $d_1 < 0$   $c_s^2 = d_1$

$$c_s^2 = d_1 \frac{H}{M} \ll 1$$

• Ruled out at 95% CL.



### With Smith and Zaldarriaga, **JCAP1001:028,2010**

- Close to de Sitter.
- Negative  $c_s^2$  due to  $\dot{H} > 0$   $\dot{H}M_{\rm Pl}^2(\partial_i \pi)^2$

• Ruled out at 95% CL.



#### With Smith and Zaldarriaga, JCAP1001:028,2010

$$S_{\pi} = \int d^4x \,\sqrt{-g} \left[ M_{\rm Pl}^2 \dot{H} (\dot{\pi}^2 - (\partial_i \pi)^2) + M_2^4 \left( \dot{\pi}^2 + \dot{\pi}^3 - \dot{\pi} (\partial_i \pi)^2 \right) - M_3^4 \dot{\pi}^3 + \dots \right]$$

• Thanks to the EFT: A qualitatively new (and superior) way to use the cosmological data



### This was about 3-point function. What about 4-point function?

with M. Zaldarriaga JCAP 2011 [hep-th]

Another New Signature: JCAP 2011 A large 4-point function without a larger 3-point function

• Large 4-point: Symmetries forces to have a leading 3-point function but for one case:



- Protected by a approximate symmetry  $\Rightarrow \pi \to -\pi$
- Huge amount of information: function of 5 variables
- Looking it in the data

with Smith and Zaldarriaga in progress



## Effective Field Theory of Multifield Inflation

with M. Zaldarriaga **1009.2093 hep-th** 

### The Effective Field Theory for Multifield Inflation

In the same Unitary Gauge, consider another massless scalar field  $\sigma$ [Classification: approximate shift symmetry:

- Abelian
- Non-Abelian
- Supersymmetry]

The add conversion into curvature perturbations



### The Effective Field Theory for Multifield Inflation

In the same Unitary Gauge, consider another massless scalar field  $\sigma$ [Classification:





- Supersymmetry]

The add conversion into curvature perturbations



#### Reintroducing the Goldstone

• Quadratic Lagrangian

$$S^{(2)} = \int d^4x \sqrt{-g} \left[ (2M_2^4 - M_{\rm Pl}^2 \dot{H}) \dot{\pi}^2 + M_{\rm Pl}^2 \dot{H} \frac{(\partial_i \pi)^2}{a^2} + 2\tilde{M}_1^2 \dot{\pi} \dot{\sigma} + (-e_1 + e_2) \dot{\sigma}^2 + e_1 \frac{(\partial_i \sigma)^2}{a^2} + \dots \right]$$

- Cubic Lagrangian ...
- Quartic Lagrangian ....
- Notice:

  - Small  $\pi$  speed of sound: Large coupling  $M^4 \dot{\pi}^2 \rightarrow M^4 \dot{\pi} (\partial_i \pi)^2$  Small  $\sigma$  speed of sound: Large coupling $(-e_1 + e_2) \dot{\sigma}^2 \rightarrow e_2 (\partial_i \pi \partial_i \sigma) \dot{\sigma}$
  - Time-kinetic mixing  $\sigma$ - $\pi$ .

#### Reintroducing the Goldstone

• Quadratic Lagrangian

$$S^{(2)} = \int d^4x \sqrt{-g} \left[ (2M_2^4 - M_{\rm Pl}^2 \dot{H}) \dot{\pi}^2 + M_{\rm Pl}^2 \dot{H} \frac{(\partial_i \pi)^2}{a^2} + 2\tilde{M}_1^2 \dot{\pi} \dot{\sigma} + (-e_1 + e_2) \dot{\sigma}^2 + e_1 \frac{(\partial_i \sigma)^2}{a^2} + \dots \right]$$

- Cubic Lagrangian ...
- Quartic Lagrangian ....
- Notice:

  - Small  $\pi$  speed of sound: Large coupling  $M^4 \dot{\pi}^2 \rightarrow M^4 \dot{\pi} (\partial_i \pi)^2$  Small  $\sigma$  speed of sound: Large coupling $(-e_1 + e_2) \dot{\sigma}^2 \rightarrow e_2 (\partial_i \pi \partial_i \sigma) \dot{\sigma}$
  - Time-kinetic mixing  $\sigma$ - $\pi$ .

- In multifield inflation:
  - -Impose symm.  $\sigma \rightarrow -\sigma$
  - -Approximate Lorentz invariance  $\Rightarrow$  kill  $\sigma^3$  terms
- Large 4-point function  $\dot{\sigma}^4$ ,  $\dot{\sigma}^2(\partial_i \sigma)^2$ ,  $(\partial_i \sigma)^4$ ,  $\sigma^2(\partial \sigma)^2 = \sigma^4$

with M. Zaldarriaga

1009.2093 hep-th

• and it is a function of 5 variables!



• Analysis in progress

with Smith and Zaldarriaga in progress

#### On the non-Abelian case

with M. Zaldarriaga **1009.2093 hep-th** 

- Not exactly a shift symmetry:  $\sigma^2 (\partial \sigma)^2$
- Building Blocks:  $[t_i, t_j] = iC_{ijk}t_k$  $[t_i, x_a] = iC_{iab}x_b$  $[x_a, x_b] = iC_{abi}t_i + iC_{abc}x_c$

$$D_{a\mu} = \partial_{\mu}\sigma_{a} + \frac{1}{2}C_{abc}\sigma_{b}\partial_{\mu}\sigma_{c} + \frac{1}{6}\left(C_{cde}C_{bea} + C_{cdi}C_{bia}\right)\sigma_{b}\sigma_{c}\partial_{\mu}\sigma_{d} + \mathcal{O}(\sigma^{3}\partial_{\mu}\sigma)$$

• Good Transformation Properties:

$$D_{\mu} \equiv D_{a\mu} x_{a}$$
$$D'_{\mu} = h\left(\sigma(x), g\right) D_{\mu} h\left(\sigma(x), g\right)^{-1}$$

• Lagrangian:

$$S_{\pi\sigma} = \int d^4x \sqrt{-g} \qquad \text{Tr} \left[ F_1^2 D_\mu D^\mu + F_2^2 D^0 D^0 + 2F_2^2 \partial_\mu \pi D^\mu D^0 - 2F_3^3 \dot{\pi} D^0 + F_3^3 (\partial_\mu \pi)^2 D^0 - 2F_4^2 \dot{\pi} D_\mu D^\mu - 2F_5^2 \dot{\pi} D^0 D^0 + \bar{F}_1 D_\mu D^\mu D^0 + \bar{F}_2 D^0 D^0 D^0 + \dots \right]$$

#### On the non-Abelian case

9

**TT**9

- Usual operators and maybe something else:
- No  $\sigma(\partial\sigma)^2$  :  $C_{abc}\sigma_a(\partial\sigma_b)(\partial\sigma_c) = 0$
- Sensitive to only one field (for adiabatic fluctuations):

$$\frac{\partial \zeta}{\partial \sigma_I} \bigg|_0 \sigma_I(x) = \frac{\partial \zeta}{\partial \sigma_K} \bigg|_0 \mathscr{D}(h)_{KI}^{-1} \mathscr{D}(h)_{IJ} \sigma_J(x) = \frac{\widetilde{\partial \zeta}}{\partial \sigma_1} \bigg|_0 \sigma_1'$$

• Easy to suppress the standard opt's:

$$\dot{\sigma}^3$$
,  $\dot{\sigma}(\partial_i \sigma)^2$ , only if  $\operatorname{Tr}[x_a x_a x_a] \neq 0$ 

 $n \mid$ 

• Mixed iso-adiabatic becomes large:

$$\langle \zeta \zeta \zeta_{\rm iso} \zeta_{\rm iso} \rangle \Rightarrow \sigma^2 (\partial \sigma)^2 \Rightarrow \epsilon_{\rm iso}^2 \frac{\mathcal{L}_4}{\mathcal{L}_2} \Big|_{E \sim H} \sim \epsilon_{\rm iso}^2 \frac{\sigma_c^2}{\Lambda_U^2} \sim \epsilon_{\rm iso}^2 \frac{H^2}{\Lambda_U^2}$$

$$\langle \zeta \zeta \zeta \zeta \rangle \implies (\partial \sigma)^4 \implies \frac{\mathcal{L}_4}{\mathcal{L}_2}\Big|_{E \sim H} \sim \frac{H^2 \sigma_c^2}{\Lambda_U^4} \sim \frac{H^4}{\Lambda_U^4}$$

• A remarkable Signature

#### SuperSymmetric case

with M. Zaldarriaga **1009.2093 hep-th** 

- Chiral Multiplet  $\Sigma \supset \sigma, \psi_{\sigma}$ , with shift symmetry  $K = (\Sigma + \Sigma^{\dagger})^2$
- In dS, propagator modified at  $E \leq H$
- Because of week coupling, radiative corrections stop at  $E \sim \lambda H$  with  $W = \lambda \Sigma^3$
- no relevant mass is generated
- Leading interaction  $\lambda^2 {
  m Im}(\sigma)^4$  with no  ${
  m Im}(\sigma)^3$
- Another way to get detectable  $\tau_{NL}^{\rm loc}$  and no  $f_{NL}^{\rm loc}$

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                              | Dispe       | rsion               | Type                                        | Origin                                                                    | Squeezed L. |
|---------------------------------------------------------------------------------------|-------------|---------------------|---------------------------------------------|---------------------------------------------------------------------------|-------------|
|                                                                                       | $w = c_s k$ | $w \propto k^2$     |                                             |                                                                           |             |
| $\dot{\sigma}^4 \;,\; \dot{\sigma}^2 (\partial_i \sigma)^2 \;, (\partial_i \sigma)^4$ | Х           |                     | Ad., Iso.                                   | Ab., non-Ab.                                                              |             |
| $(\partial_{\mu}\sigma)^4$                                                            | Х           |                     | Ad., Iso.                                   | Ab., non-Ab.                                                              |             |
| $\sigma^4$                                                                            | Х           | Х                   | Ad., Iso.                                   | Ab. <sub>s</sub> , non-Ab. <sub>s</sub> , S.*                             | Х           |
| $\dot{\sigma}\sigma^3$                                                                | Х           | Х                   | Ad., Iso.                                   | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                           | Х           |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                          | Х           | $X^{\dagger \star}$ | Ad. <sup><math>\dagger</math>*</sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ ,     | Х           |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                    | Х           |                     | Ad. <sup><math>\dagger</math>*</sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , S.* | Х           |
| $\sigma(\partial\sigma)^3$                                                            | Х           |                     | Iso.                                        | non-Ab. $_{s}^{\star}$ .                                                  | Х           |
| $\dot{\sigma}^3 \;,\; \dot{\sigma} (\partial_i \sigma)^2$                             | Х           |                     | Ad., Iso.                                   | Ab., non-Ab.                                                              |             |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$         |             | Х                   | Ad., Iso.                                   | Ab.                                                                       |             |
| $\sigma^{3}$                                                                          | Х           | Х                   | Ad., Iso.                                   | Abs, non- $Abs$ , S, R                                                    | Х           |
| $\dot{\sigma}\sigma^2$                                                                | Х           | Х                   | Ad., Iso.                                   | Abs, non- $Abs$                                                           | Х           |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                            | Х           | Х                   | Ad., Iso.                                   | $Ab{s}^{\dagger \star}$ , non- $Ab{s}^{\dagger \star}$                    | Х           |
| $\sigma(\partial_\mu\sigma)^2$                                                        | X           |                     | Ad., Iso.                                   | Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ .             | X           |

| Operator                                                       | Dispersion  |                 | Squeezed L. |
|----------------------------------------------------------------|-------------|-----------------|-------------|
|                                                                | $w = c_s k$ | $w \propto k^2$ |             |
| $\dot{\pi}^4$                                                  | Х           |                 |             |
| $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,    |             | Х               |             |
| $\dot{\pi}^3$ , $\dot{\pi}(\partial_i \pi)^2$                  | Х           |                 |             |
| $\dot{\pi}(\partial_i\pi)^2, \partial_j^2\pi(\partial_i\pi)^2$ |             | Х               |             |

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                              | Dispe       | rsion               | Type                                             | Origin                                                                    | Squeezed L. |
|---------------------------------------------------------------------------------------|-------------|---------------------|--------------------------------------------------|---------------------------------------------------------------------------|-------------|
|                                                                                       | $w = c_s k$ | $w \propto k^2$     |                                                  |                                                                           |             |
| $\dot{\sigma}^4 \ , \ \dot{\sigma}^2 (\partial_i \sigma)^2 \ , (\partial_i \sigma)^4$ | V           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $(\partial_{\mu}\sigma)^4$                                                            | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $\sigma^4$                                                                            | Х           | Х                   | Ad., Iso.                                        | Ab. <sub>s</sub> , non-Ab. <sub>s</sub> , S.*                             | Х           |
| $\dot{\sigma}\sigma^3$                                                                | Х           | Х                   | Ad., Iso.                                        | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                           | Х           |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                          | Х           | $X^{\dagger \star}$ | Ad. <sup><math>\dagger \star</math></sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ ,     | Х           |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                    | Х           |                     | Ad. <sup><math>\dagger</math>*</sup> , Iso.      | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , S.* | Х           |
| $\sigma(\partial\sigma)^3$                                                            | X           |                     | Iso.                                             | non-Ab. $_{s}^{\star}$ .                                                  | Х           |
| $\dot{\sigma}^3 \ , \ \dot{\sigma} (\partial_i \sigma)^2$                             | X           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$         |             | Х                   | Ad., Iso.                                        | Ab.                                                                       |             |
| $\sigma^{3}$                                                                          | Х           | Х                   | Ad., Iso.                                        | Ab. $_s$ , non-Ab. $_s$ , S, R                                            | Х           |
| $\dot{\sigma}\sigma^2$                                                                | Х           | Х                   | Ad., Iso.                                        | Abs, non-Abs                                                              | Х           |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                            | Х           | Х                   | Ad., Iso.                                        | $Ab{s}^{\dagger \star}, \text{ non-}Ab{s}^{\dagger \star}$                | Х           |
| $\sigma(\partial_{\mu}\sigma)^2$                                                      | X           |                     | Ad., Iso.                                        | Ab. $^{\dagger\star}_s$ , non-Ab. $^{\dagger\star}_s$ .                   | X           |

| Single Field |
|--------------|
|--------------|

| Operator                                                        | Dispersion  |                 | Squeezed L. |
|-----------------------------------------------------------------|-------------|-----------------|-------------|
|                                                                 | $w = c_s k$ | $w \propto k^2$ |             |
| $\dot{\pi}^4$                                                   | Х           |                 |             |
| $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,     |             | Х               |             |
| $\dot{\pi}^3$ , $\dot{\pi}(\partial_i \pi)^2$                   | Х           |                 |             |
| $\dot{\pi}(\partial_i\pi)^2 , \partial_j^2\pi(\partial_i\pi)^2$ |             | Х               |             |

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                                 | Dispe       | rsien               | Type                     | Origin                                                                    | Squeezed L. |
|------------------------------------------------------------------------------------------|-------------|---------------------|--------------------------|---------------------------------------------------------------------------|-------------|
|                                                                                          | $w = c_s k$ | $w \propto k^2$     |                          |                                                                           |             |
| $\dot{\sigma}^4 \;,\; \dot{\sigma}^2 (\partial_i \sigma)^2 \;, (\partial_i \sigma)^4 \;$ | Х           |                     | Ad., Iso.                | Ab., non-Ab.                                                              |             |
| $(\partial_{\mu}\sigma)^4$                                                               | Х           |                     | Ad., Iso.                | Ab., non-Ab.                                                              |             |
| $\sigma^4$                                                                               | Х           | Х                   | Ad., Iso.                | Ab. <sub>s</sub> , non-Ab. <sub>s</sub> , S.*                             | Х           |
| $\dot{\sigma}\sigma^3$                                                                   | Х           | Х                   | Ad., Iso.                | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                           | Х           |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                             | Х           | $X^{\dagger \star}$ | Ad. <sup>†*</sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ ,     | Х           |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                       | Х           |                     | Ad. <sup>†*</sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , S.* | Х           |
| $\sigma(\partial\sigma)^3$                                                               | Х           |                     | Iso.                     | non-Ab. $_{s}^{\star}$ .                                                  | Х           |
| $\dot{\sigma}^3 \ , \ \dot{\sigma} (\partial_i \sigma)^2$                                | Х           |                     | Ad., Iso.                | Ab., non-Ab.                                                              |             |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$            |             | Х                   | Ad., Iso.                | Ab.                                                                       |             |
| $\sigma^{3}$                                                                             | Х           | Х                   | Ad., Iso.                | Ab. $_s$ , non-Ab. $_s$ , S, R                                            | Х           |
| $\dot{\sigma}\sigma^2$                                                                   | Х           | Х                   | Ad., Iso.                | Abs, non- $Abs$                                                           | Х           |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                               | Х           | Х                   | Ad., Iso.                | $Ab{s}^{\dagger\star}$ , non- $Ab{s}^{\dagger\star}$                      | Х           |
| $\sigma (\partial_\mu \sigma)^2$                                                         | X           |                     | Ad., Iso.                | Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ .             | X           |

| Operator                                                        | Dispersion  |                 | Squeezed L. |
|-----------------------------------------------------------------|-------------|-----------------|-------------|
|                                                                 | $w = c_s k$ | $w \propto k^2$ |             |
| $\dot{\pi}^4$                                                   | Х           |                 |             |
| $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,     |             | Х               |             |
| $\dot{\pi}^3 , \dot{\pi} (\partial_i \pi)^2$                    | Х           |                 |             |
| $\dot{\pi}(\partial_i\pi)^2 , \partial_j^2\pi(\partial_i\pi)^2$ |             | Х               |             |

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                              | Dispe       | rsion               | Туре                                             | Origin                                                                    | Squeezed L. |
|---------------------------------------------------------------------------------------|-------------|---------------------|--------------------------------------------------|---------------------------------------------------------------------------|-------------|
|                                                                                       | $w = c_s k$ | $w \propto k^2$     |                                                  |                                                                           |             |
| $\dot{\sigma}^4 \ , \ \dot{\sigma}^2 (\partial_i \sigma)^2 \ , (\partial_i \sigma)^4$ | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $(\partial_{\mu}\sigma)^4$                                                            | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $\sigma^4$                                                                            | Х           | Х                   | Ad., Iso.                                        | Ab. <sub>s</sub> , non-Ab. <sub>s</sub> , S.*                             | Х           |
| $\dot{\sigma}\sigma^3$                                                                | Х           | Х                   | Ad., Iso.                                        | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                           | Х           |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                          | Х           | $X^{\dagger \star}$ | Ad. <sup><math>\dagger \star</math></sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger\star}$ , non-Ab. $_{s}^{\dagger\star}$ ,       | Х           |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                    | Х           |                     | Ad. <sup><math>\dagger \star</math></sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , S.* | Х           |
| $\sigma(\partial\sigma)^3$                                                            | Х           |                     | Iso.                                             | non-Ab. $_{s}^{\star}$ .                                                  | Х           |
| $\dot{\sigma}^3 \ , \ \dot{\sigma} (\partial_i \sigma)^2$                             | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$         |             | Х                   | Ad., Iso.                                        | Ab.                                                                       |             |
| $\sigma^3$                                                                            | Х           | Х                   | Ad., Iso.                                        | Ab. $_s$ , non-Ab. $_s$ , S, R                                            | Х           |
| $\dot{\sigma}\sigma^2$                                                                | Х           | Х                   | Ad., Iso.                                        | Abs, non-Abs                                                              | Х           |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                            | Х           | Х                   | Ad., Iso.                                        | $Ab{s}^{\dagger\star}$ , non- $Ab{s}^{\dagger\star}$                      | Х           |
| $\sigma(\partial_{\mu}\sigma)^2$                                                      | Х           |                     | Ad., Iso.                                        | Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ .             | Х           |

| Single Field |
|--------------|
|--------------|

| Operator                                                        | Dispersion  |                 | Squeezed L. |
|-----------------------------------------------------------------|-------------|-----------------|-------------|
|                                                                 | $w = c_s k$ | $w \propto k^2$ |             |
| $\dot{\pi}^4$                                                   | Х           |                 |             |
| $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,     |             | Х               |             |
| $\dot{\pi}^3$ , $\dot{\pi}(\partial_i \pi)^2$                   | Х           |                 |             |
| $\dot{\pi}(\partial_i\pi)^2 , \partial_j^2\pi(\partial_i\pi)^2$ |             | Х               |             |

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                              | Dispe       | rsion               | Type                                        | Origin                                                                | Squeezed L. |
|---------------------------------------------------------------------------------------|-------------|---------------------|---------------------------------------------|-----------------------------------------------------------------------|-------------|
|                                                                                       | $w = c_s k$ | $w \propto k^2$     |                                             |                                                                       |             |
| $\dot{\sigma}^4 \;,\; \dot{\sigma}^2 (\partial_i \sigma)^2 \;, (\partial_i \sigma)^4$ | Х           |                     | Ad., Iso.                                   | Ab., non-Ab.                                                          |             |
| $(\partial_{\mu}\sigma)^4$                                                            | Х           |                     | Ad., Iso.                                   | Ab., non-Ab.                                                          |             |
| $\sigma^4$                                                                            | Х           | Х                   | Ad., Iso.                                   | Ab., per Ab., $S^*$                                                   | Х           |
| $\dot{\sigma}\sigma^3$                                                                | Х           | Х                   | Ad., Iso.                                   | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                       | Х           |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                          | Х           | $X^{\dagger \star}$ | Ad. <sup><math>\dagger</math>*</sup> , Iso. | non Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , | Х           |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                    | Х           |                     | Ad. <sup><math>\dagger</math>*</sup> , Iso. | non-Ab, Ab., in Ab., S.*                                              | Х           |
| $\sigma(\partial\sigma)^3$                                                            | Х           |                     | Iso.                                        | non-Ab. $_{s}^{\star}$ .                                              | Х           |
| $\dot{\sigma}^3 \ , \ \dot{\sigma} (\partial_i \sigma)^2$                             | Х           |                     | Ad., Iso.                                   | Ab., non-Ab.                                                          |             |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$         |             | Х                   | Ad., Iso.                                   | Ab.                                                                   |             |
| $\sigma^{3}$                                                                          | Х           | Х                   | Ad., Iso.                                   | $Ab_{.s}, non-Ab_{.s}, S, R$                                          | Х           |
| $\dot{\sigma}\sigma^2$                                                                | Х           | Х                   | Ad., Iso.                                   | Abs, non-Abs                                                          | Х           |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                            | Х           | Х                   | Ad., Iso.                                   | $Ab{s}^{\dagger\star}, \text{ non-}Ab{s}^{\dagger\star}$              | Х           |
| $\sigma(\partial_\mu\sigma)^2$                                                        | Х           |                     | Ad., Iso.                                   | Ab. $_{s}^{\dagger\star}$ , non-Ab. $_{s}^{\dagger\star}$ .           | Х           |

| Operator                                                            | Dispersion  |                 | Squeezed L. |
|---------------------------------------------------------------------|-------------|-----------------|-------------|
|                                                                     | $w = c_s k$ | $w \propto k^2$ |             |
| $\dot{\pi}^4$                                                       | Х           |                 |             |
| $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,         |             | Х               |             |
| $\dot{\pi}^3$ , $\dot{\pi}(\partial_i \pi)^2$                       | Х           |                 |             |
| $\dot{\pi}(\partial_i \pi)^2 , \partial_j^2 \pi (\partial_i \pi)^2$ |             | Х               |             |

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                                 | Dispe       | rsion               | Type                                             | Origin                                                                    | Squeezed L. |
|------------------------------------------------------------------------------------------|-------------|---------------------|--------------------------------------------------|---------------------------------------------------------------------------|-------------|
|                                                                                          | $w = c_s k$ | $w \propto k^2$     |                                                  |                                                                           |             |
| $\dot{\sigma}^4 \;,\; \dot{\sigma}^2 (\partial_i \sigma)^2 \;, (\partial_i \sigma)^4 \;$ | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $(\partial_{\mu}\sigma)^4$                                                               | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $\sigma^4$                                                                               | Х           | Х                   | Ad., Iso.                                        | Ab. <sub>s</sub> , non-Ab. <sub>s</sub> , S.*                             | Х           |
| $\dot{\sigma}\sigma^3$                                                                   | Х           | Х                   | Ad., Iso.                                        | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                           | Х           |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                             | Х           | $X^{\dagger \star}$ | Ad. <sup><math>\dagger</math>*</sup> , Iso.      | non-Ab, Ab. $_{s}^{\dagger\star}$ , non-Ab. $_{s}^{\dagger\star}$ ,       | Х           |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                       | Х           |                     | Ad. <sup><math>\dagger \star</math></sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , S.* | Х           |
| $\sigma(\partial\sigma)^3$                                                               | Х           |                     | Iso.                                             | non-Ab. $_{s}^{\star}$ .                                                  | X           |
| $\dot{\sigma}^3 \ , \ \dot{\sigma} (\partial_i \sigma)^2$                                | Х           |                     | Ad., Iso.                                        | Ab., non-Ab.                                                              |             |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$            |             | Х                   | Ad., Iso.                                        | Ab.                                                                       |             |
| $\sigma^{3}$                                                                             | Х           | Х                   | Ad., Iso.                                        | Ab. $_s$ , non-Ab. $_s$ , S, R                                            | Х           |
| $\dot{\sigma}\sigma^2$                                                                   | Х           | Х                   | Ad., Iso.                                        | Abs, non- $Abs$                                                           | Х           |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                               | Х           | Х                   | Ad., Iso.                                        | $Ab{s}^{\dagger\star}$ , non- $Ab{s}^{\dagger\star}$                      | Х           |
| $\sigma(\partial_\mu\sigma)^2$                                                           | X           |                     | Ad., Iso.                                        | $Ab{s}^{\dagger\star}$ , non- $Ab{s}^{\dagger\star}$ .                    | X           |

| Operator                                                        | Dispersion  |                 | Squeezed L. |
|-----------------------------------------------------------------|-------------|-----------------|-------------|
|                                                                 | $w = c_s k$ | $w \propto k^2$ |             |
| $\dot{\pi}^4$                                                   | Х           |                 |             |
| $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,     |             | Х               |             |
| $\dot{\pi}^3 , \dot{\pi} (\partial_i \pi)^2$                    | Х           |                 |             |
| $\dot{\pi}(\partial_i\pi)^2 , \partial_j^2\pi(\partial_i\pi)^2$ |             | Х               |             |

#### MultiField

with M. Zaldarriaga **1009.2093 hep-th** 

| Operator                                                                              | Dispersion                                                   |                  | Туре                                        | Origin                                                                    |                                                                | Squeezed L.      |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------|---------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|------------------|
|                                                                                       | $w = c_s k$                                                  | $w \propto k^2$  |                                             |                                                                           |                                                                |                  |
| $\dot{\sigma}^4 \ , \ \dot{\sigma}^2 (\partial_i \sigma)^2 \ , (\partial_i \sigma)^4$ | Х                                                            |                  | Ad., Iso.                                   | Ab., non-Ab.                                                              |                                                                |                  |
| $(\partial_\mu \sigma)^4$                                                             | Х                                                            |                  | Ad., Iso.                                   | Ab., non-Ab.                                                              |                                                                |                  |
| $\sigma^4$                                                                            | Х                                                            | Х                | Ad., Iso.                                   | Ab                                                                        | $h_{s}$ , non-Ab. $_{s}$ , S.*                                 | Х                |
| $\dot{\sigma}\sigma^3$                                                                | Х                                                            | Х                | Ad., Iso.                                   | A                                                                         | $Ab{s}^{\dagger}, \text{ non-}Ab{s}^{\dagger}.$                | Х                |
| $\sigma^2 \dot{\sigma}^2 \;, \sigma^2 (\partial_i \sigma)^2$                          | Х                                                            | X <sup>†</sup> * | Ad. <sup><math>\dagger</math>*</sup> , Iso. | non-A                                                                     | b, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ | х, Х             |
| $\sigma^2 (\partial_\mu \sigma)^2$                                                    | Х                                                            |                  | Ad. <sup><math>\dagger</math>*</sup> , Iso. | non-Ab, Ab. $_{s}^{\dagger \star}$ , non-Ab. $_{s}^{\dagger \star}$ , S.* |                                                                | S.* X            |
| $\sigma(\partial\sigma)^3$                                                            | Х                                                            |                  | Iso.                                        | non-Ab. $_{s}^{\star}$ .                                                  |                                                                | X                |
| $\dot{\sigma}^3 \;,\; \dot{\sigma} (\partial_i \sigma)^2$                             | X                                                            |                  | Ad., J. p.                                  | Ab., non-Ab.                                                              |                                                                |                  |
| $\dot{\sigma}(\partial_i\sigma)^2 \ , \partial_j^2\sigma(\partial_i\sigma)^2$         |                                                              | Х                | Ad., Isp.                                   | Ab.                                                                       |                                                                |                  |
| $\sigma^3$                                                                            | Х                                                            | Х                | Ad., Isp.                                   | Ab. $_s$ , non-Ab. $_s$ , S, R                                            |                                                                | X                |
| $\dot{\sigma}\sigma^2$                                                                | Х                                                            | Х                | Ad., Isp.                                   | $Abs, \text{ non-Ab.}_s$                                                  |                                                                | X                |
| $\sigma \dot{\sigma}^2 \;,\; \sigma (\partial_i \sigma)^2$                            | Х                                                            | Х                | Ad., Is .                                   | $Ab{s}^{\dagger \star}, \text{ non-}Ab{s}^{\dagger \star}$                |                                                                | X                |
| $\sigma (\partial_{\mu} \sigma)^2$                                                    | Х                                                            |                  | Ad., Isc.                                   | A                                                                         | b. <sup>†*</sup> , non-Ab. <sup>†*</sup> .                     | X                |
| Single Field                                                                          | Field Operator                                               |                  | Di persion Squeezed L.                      |                                                                           |                                                                |                  |
|                                                                                       |                                                              |                  | $w = c_s k$                                 | $w \propto k^2$                                                           |                                                                |                  |
|                                                                                       | $\dot{\pi}^4$                                                |                  | X                                           |                                                                           | <b></b>                                                        | You can tell the |
|                                                                                       | $(\partial_j^2 \pi)^4$ , $\dot{\pi} (\partial_j^2 \pi)^3$ ,. |                  |                                             | X                                                                         |                                                                | anart            |
|                                                                                       | <br>                                                         | <u> </u>         |                                             |                                                                           |                                                                | ipari.           |

Х

Х

 $\dot{\pi}^3$ ,  $\dot{\pi}(\partial_i \pi)^2$ 

 $\dot{\pi}(\partial_i \pi)^2$ ,  $\partial_i^2 \pi (\partial_i \pi)^2$ 









Theory

- Adding Gauge Bosons and Fermions
- Higher derivative interactions in  $\pi$  , ex:  $(\partial^4 \pi)^3$

Bartolo, Fasiello, Matarrese, Riotto **2010, 2010** Creminelli, D'Amico, Norena, Trincherini **2010** with Behbahani, Mirbabayi **in progress** 

• Relaxing the shift-symmetry of  $~\pi$ 

with Dimarsky, Behbahani, Mirbabayi in progress

- Backreaction from additional Fields on  $\,\pi\,$  , EFT for thermal and trapped Inflat.

 $S_{\rm int} = -\int d^4x \mathcal{O}(x)\pi(x),$ 

with Nacir, Porto, and Zaldarriaga **in progress** 

### Conclusions

#### Inflation: Exploring the beginning of the Universe

• Many observational data, and many more to come



- Power Spectra: scalar and gravity waves
- Non-Gaussianities: Richness of information
  - Smoking Gun
  - Interactions

#### Fundamental Theory

• Learning about the origin of the Universe and the high energy physics

$$S_{\pi} = \int d^4x \,\sqrt{-g} \left[ M_{\rm Pl}^2 \dot{H} (\dot{\pi}^2 - (\partial_i \pi)^2) + M_2^4 \left( \dot{\pi}^2 + \dot{\pi}^3 - \dot{\pi} (\partial_i \pi)^2 \right) - M_3^4 \dot{\pi}^3 + \dots \right]$$



DBI inflation ( $\tilde{c}_3 = 3(1-c_s^2)$ 

Equilateral:  $\partial_i \pi (\partial_i \pi)^2$ 

 $F(\frac{k_2}{k_1}, \frac{k_3}{k_1})$