# The Effective Field Theory of Inflation and Multifield Inflation 

## Large non-Gaussianities

- Standard slow-roll infl.: very Gaussian

Maldacena, JHEP,2003
Acquaviva et al, Nunl.Phys. B,2003

$$
\frac{\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \zeta_{\vec{k}_{3}}\right\rangle}{\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}}\right\rangle^{3 / 2}} \simeq f_{\mathrm{NL}}\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}}\right\rangle^{1 / 2} \sim 10^{-7} \quad f_{\mathrm{NL}} \sim 10^{-2}
$$

So far undetectable

- DBI inflation

Alishahiha, Silverstein and Tong, Phys.Rev.D70:123505,2004

$$
\mathcal{L}=\phi^{4} \sqrt{1-\lambda \frac{\dot{\phi}^{2}}{\phi^{4}}} \quad \text { Speed limit in AdS }
$$



- Large non-Gaussianities

$$
f_{\mathrm{NL}} \sim 10^{2} \quad \text { Currently Detectable }
$$

- Shape of non-Gaussianities

$$
\left\langle\zeta_{\vec{k}_{1}} \zeta_{\vec{k}_{2}} \zeta_{\vec{k}_{3}}\right\rangle=(2 \pi)^{3} \delta^{(3)}\left(\sum_{i} \vec{k}_{i}\right) F\left(\frac{k_{2}}{k_{1}}, \frac{k_{3}}{k_{1}}\right)
$$

- What are the generic signatures?



# The Effective Field Theory of Inflation 

with C. Cheung, P. Creminelli, L. Fitzpatrick, J. Kaplan<br>JHEP 0803:014,2008

## The Effective Field Theory

Inflation: Quasi IS phase with a broken time-translation.
Inflation: theory of the Goldstone. $\pi \rightarrow \pi-\delta t$

$$
S_{\pi}=\int d^{4} x \sqrt{-g}\left[M_{\mathrm{Pl}}^{2} \dot{H}\left(\dot{\pi}^{2}-\left(\partial_{i} \pi\right)^{2}\right)+M_{2}^{4}\left(\dot{\pi}^{2}+\dot{\pi}^{3}-\dot{\pi}\left(\partial_{i} \pi\right)^{2}\right)-M_{3}^{4} \dot{\pi}^{3}+\ldots\right]
$$

- Analogous of the (more important!) Chiral Lagrangian for the Pions s.Weinberg PRL 17, $1966 \pi \sim \delta \phi$
- All single field models are unified (Ghost Inflation, DBI inflation, ...); prove theorems:
- Theorem: In single clock models, only Inflation can produce more than 10 e-foldings of scale invariant fluct.
with Baumann and Zaldarriaga 1101:3320 [hep-th]
- What is forced by symmetries and large signatures are explicit:
- The spatial kinetic term: pathologies for : $\dot{H}>0$ add $\delta E^{2} \quad \Rightarrow \quad\left(\partial_{i}^{2} \pi\right)^{2} \quad \Rightarrow \quad w<-1$
with Creminelli, Luty and Nicolis, JHEP 0612
- Connection between $\mathrm{c}_{\mathrm{S}}$ and Non-Gaussianities:

VG: $f_{\mathrm{NL}}^{\text {non-loc. }} \sim \frac{1}{c_{s}^{2}}$
$\bullet$ Large interactions are allowed $\Longrightarrow$ Large non-Gaussianities!

$$
\dot{\pi}(\nabla \pi)^{2}
$$

## Large non-Gaussianites



A function of two variables: we are measuring the interactions!
(and the coefficient of the Lagrangian!)

## Let's look at the data



Optimal analysis of WMAP data (foreground template corrections) are $\sim$ compatible with Gaussianity Optimal limits on NG

$$
\begin{aligned}
& -10<\mathrm{f}_{\mathrm{NL}}{ }^{\text {local }}<74 \text { at } 95 \% \text { C.L. } \\
& \left(-5<\mathrm{f}_{\mathrm{NL}}{ }^{\text {local }}<59 \text { at } 95 \% \text { C.L. }\right) \quad \begin{array}{c}
\text { after combining with } \text { ss } \\
\text { secent } \\
\hline
\end{array} \\
& \text { Slosar et al. JCAP 0808:031, } 2008
\end{aligned}
$$

$-214<\mathrm{f}_{\mathrm{NL}}$ equil. $<266$ at $95 \%$ C.L. $-410<\mathrm{f}_{\mathrm{NL}}$ orthog. $<6$ at $95 \%$ C.L.


$f_{\mathrm{NL}}^{\mathrm{flat}}$


## (Optimal) Limits on the parameters of the Lagrangian

$$
S_{\pi}=\int d^{4} x \sqrt{-g}\left[M_{\mathrm{Pl}}^{2} \dot{H}\left(\dot{\pi}^{2}-\left(\partial_{i} \pi\right)^{2}\right)+M_{2}^{4}\left(\dot{\pi}^{2}+\dot{\pi}^{3}-\dot{\pi}\left(\partial_{i} \pi\right)^{2}\right)-M_{3}^{4} \dot{\pi}^{3}+\ldots\right]
$$

- Limits on $f_{N L}$ 's get translated into limits on the parameters
- For models not-very-close to de Sitter (like DBI): $c_{s}, \tilde{c}_{3}$

- Limit on the speed of sound: $c_{s} \gtrsim 0.011$ !


## (Optimal) Limits on the parameters of the Lagrangian

- Close to de Sitter. $\quad d_{1} \delta g^{00} \delta K_{i}^{i}$
- Dispertion relation: $\omega^{2}=c_{s}^{2} k^{2} \quad c_{s}^{2}=d_{1} \frac{H}{M} \ll 1$
$c_{s}$


With Smith and Zaldarriaga,
JCAP1001:028,2010
Very similar in spirit to Peskin and Takeuchi PRD46:381,1992

## (Optimal) Limits on the parameters of the Lagrangian

- Close to de Sitter. $d_{2} \delta K_{i}^{i 2}$
- Dispertion relation: $\omega^{2}=\left(d_{2}+d_{3}\right) \frac{k^{4}}{M^{2}}$


With Smith and Zaldarriaga,
JCAP1001:028,2010
Very similar in spirit to Peskin and Takeuchi PRD46:381,1992

## (Optimal) Limits on the parameters of the Lagrangian

- Close to de Sitter.
- Negative $c_{s}^{2}$ due to $d_{1}<0$

$$
c_{s}^{2}=d_{1} \frac{H}{M} \ll 1
$$

- Ruled out at $95 \%$ CL.


With Smith and Zaldarriaga,
JCAP1001:028,2010
Very similar in spirit to Peskin and Takeuchi PRD46:381,1992

## (Optimal) Limits on the parameters of the Lagrangian

- Close to de Sitter.
- Negative $c_{s}^{2}$ due to $\dot{H}>0 \quad \dot{H} M_{\mathrm{Pl}}^{2}\left(\partial_{i} \pi\right)^{2}$
- Ruled out at $95 \%$ CL.



## (Optimal) Limits on the parameters of the Lagrangian

$S_{\pi}=\int d^{4} x \sqrt{-g}\left[M_{\mathrm{Pl}}^{2} \dot{H}\left(\dot{\pi}^{2}-\left(\partial_{i} \pi\right)^{2}\right)+M_{2}^{4}\left(\dot{\pi}^{2}+\dot{\pi}^{3}-\dot{\pi}\left(\partial_{i} \pi\right)^{2}\right)-M_{3}^{4} \dot{\pi}^{3}+\ldots\right]$

- Thanks to the EFT: A qualitatively new (and superior) way to use the cosmological data


With Smith and Zaldarriaga, JCAP1001:028,2010

Very similar in spirit to Peskin and Takeuchi
PRD46:381,1992

$$
\frac{1}{c_{s}^{2}} \dot{\pi}\left(\partial_{i} \pi\right)^{2}+\frac{\tilde{c}_{3}}{c_{s}^{2}} \dot{\pi}^{3}
$$

# This was about 3-point function. What about 4-point function? 

with M. Zaldarriaga
JCAP 2011 [hep-th]

Another New Signature:

## A large 4-point function without a larger 3-point function

- Large 4-point: Symmetries forces to have a leading 3-point function but for one case:

$$
\dot{\pi}^{4}
$$

- Protected by a approximate symmetry $\quad \Rightarrow \quad \pi \rightarrow-\pi$
- Huge amount of information: function of 5 variables
- Looking it in the data
with Smith and Zaldarriaga in progress



# Effective Field Theory of Multifield Inflation 

with M. Zaldarriaga
1009.2093 hep-th

## The Effective Field Theory for Multifield Inflation


approximate shift symmetry:

- Abelian
- Non-Abelian
- Supersymmetry]

The add conversion into curvature perturbations

## The Effective Field Theory for Multifield Inflation

In the same Unitary Gauge, consider another massless scalar field $\sigma$ [Classification:
approximate shift symmetry:
Abelian

- Non-Abelian
- Supersymmetry]


The add conversion into curvature perturbations

- Quadratic Lagrangian

$$
S^{(2)}=\int d^{4} x \sqrt{-g}\left[\left(2 M_{2}^{4}-M_{\mathrm{Pl}}^{2} \dot{H}\right) \dot{\pi}^{2}+M_{\mathrm{Pl}}^{2} \dot{H} \frac{\left(\partial_{i} \pi\right)^{2}}{a^{2}}+2 \tilde{M}_{1}^{2} \dot{\pi} \dot{\sigma}+\left(-e_{1}+e_{2}\right) \dot{\sigma}^{2}+e_{1} \frac{\left(\partial_{i} \sigma\right)^{2}}{a^{2}}+\ldots\right]
$$

- Cubic Lagrangian ...
- Quartic Lagrangian ....
- Notice:
- Small $\pi$ speed of sound: Large coupling $\quad M^{4} \dot{\pi}^{2} \quad \rightarrow \quad M^{4} \dot{\pi}\left(\partial_{i} \pi\right)^{2}$
- Small $\sigma$ speed of sound: $\operatorname{Large}$ coupling $\left(-e_{1}+e_{2}\right) \dot{\sigma}^{2} \quad \rightarrow \quad e_{2}\left(\partial_{i} \pi \partial_{i} \sigma\right) \dot{\sigma}$
- Time-kinetic mixing $\sigma-\pi$.
- Quadratic Lagrangian
$S^{(2)}=\int d^{4} x \sqrt{-g}\left[\left(2 M_{2}^{4}-M_{\mathrm{Pl}}^{2} \dot{H}\right) \dot{\pi}^{2}+M_{\mathrm{Pl}}^{2} \dot{H} \frac{\left(\partial_{i} \pi\right)^{2}}{a^{2}}+2 \tilde{M}_{1}^{2} \dot{\pi} \dot{\sigma}+\left(-e_{1}+e_{2}\right) \dot{\sigma}^{2}+e_{1} \frac{\left(\partial_{i} \sigma\right)^{2}}{a^{2}}+\ldots\right]$
- Cubic Lagrangian ...
- Quartic Lagrangian ....
- Notice:
- Small $\pi$ speed of sound: Large coupling $\quad M^{4} \dot{\pi}^{2} \quad \rightarrow \quad M^{4} \dot{\pi}\left(\partial_{i} \pi\right)^{2}$
- Small $\sigma$ speed of sound: Large coupling $\left(-e_{1}+e_{2}\right) \dot{\sigma}^{2} \quad \rightarrow \quad e_{2}\left(\partial_{i} \pi \partial_{i} \sigma\right) \dot{\sigma}$
- Time-kinetic mixing $\sigma-\pi$.


## New Signatures: new 3-point and 4-point functions

with M. Zaldarriaga

- In multifield inflation:
-Impose symm. $\quad \sigma \rightarrow-\sigma$
-Approximate Lorentz invariance $\quad \Rightarrow$ kill $\sigma^{3}$ terms
- Large 4-point function $\quad \dot{\sigma}^{4}, \quad \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2}, \quad\left(\partial_{i} \sigma\right)^{4}, \quad \sigma^{2}(\partial \sigma)^{2} \quad \sigma^{4}$
- and it is a function of 5 variables!

- Analysis in progress
- Not exactly a shift symmetry: $\sigma^{2}(\partial \sigma)^{2}$
- Building Blocks:

$$
\begin{aligned}
& {\left[t_{i}, t_{j}\right]=i C_{i j k} t_{k}} \\
& {\left[t_{i}, x_{a}\right]=i C_{i a b} x_{b}} \\
& {\left[x_{a}, x_{b}\right]=i C_{a b i} t_{i}+i C_{a b c} x_{c}}
\end{aligned}
$$

$\bullet$.

$$
D_{a \mu}=\partial_{\mu} \sigma_{a}+\frac{1}{2} C_{a b c} \sigma_{b} \partial_{\mu} \sigma_{c}+\frac{1}{6}\left(C_{c d e} C_{b e a}+C_{c d i} C_{b i a}\right) \sigma_{b} \sigma_{c} \partial_{\mu} \sigma_{d}+\mathcal{O}\left(\sigma^{3} \partial_{\mu} \sigma\right)
$$

- Good Transformation Properties:
- Lagrangian:

$$
\begin{aligned}
D_{\mu} & \equiv D_{a \mu} x_{a} \\
D_{\mu}^{\prime} & \left.=h(\sigma(x), g)) D_{\mu} h(\sigma(x), g)\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
S_{\pi \sigma}=\int d^{4} x \sqrt{-g} \quad & \operatorname{Tr}\left[F_{1}^{2} D_{\mu} D^{\mu}+F_{2}^{2} D^{0} D^{0}+2 F_{2}^{2} \partial_{\mu} \pi D^{\mu} D^{0}-2 F_{3}^{3} \dot{\pi} D^{0}+F_{3}^{3}\left(\partial_{\mu} \pi\right)^{2} D^{0}\right. \\
& \left.-2 F_{4}^{2} \dot{\pi} D_{\mu} D^{\mu}-2 F_{5}^{2} \dot{\pi} D^{0} D^{0}+\bar{F}_{1} D_{\mu} D^{\mu} D^{0}+\bar{F}_{2} D^{0} D^{0} D^{0}+\ldots\right]
\end{aligned}
$$

- Usual operators and maybe something else:
- No $\quad \sigma(\partial \sigma)^{2}: \quad C_{a b c} \sigma_{a}\left(\partial \sigma_{b}\right)\left(\partial \sigma_{c}\right)=0$
- Sensitive to only one field (for adiabatic fluctuations):

$$
\left.\frac{\partial \zeta}{\partial \sigma_{I}}\right|_{0} \sigma_{I}(x)=\left.\frac{\partial \zeta}{\partial \sigma_{K}}\right|_{0} \mathscr{D}(h)_{K I}^{-1} \mathscr{D}(h)_{I J} \sigma_{J}(x)=\left.\widetilde{\frac{\partial \zeta}{\partial \sigma_{1}}}\right|_{0} \sigma_{1}^{\prime}
$$

- Easy to suppress the standard opt's:

$$
\dot{\sigma}^{3}, \quad \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \quad \text { only if } \quad \operatorname{Tr}\left[x_{a} x_{a} x_{a}\right] \neq 0
$$

- Mixed iso-adiabatic becomes large:

$$
\left.\begin{aligned}
& \left.\begin{array}{l}
\text { Mixed iso-adiabatic becomes large: } \\
\left\langle\zeta \zeta \zeta_{\text {iso }} \zeta_{\text {iso }}\right\rangle \Rightarrow \sigma^{2}(\partial \sigma)^{2}
\end{array} \Rightarrow \epsilon_{\text {iso }}^{2} \frac{\mathcal{L}_{4}}{\mathcal{L}_{2}}\right|_{E \sim H} \sim \epsilon_{\text {iso }}^{2} \frac{\sigma_{c}^{2}}{\Lambda_{U}^{2}} \sim \epsilon_{\text {iso }}^{2} \frac{H^{2}}{\Lambda_{U}^{2}} \\
& \langle\zeta \zeta \zeta \zeta\rangle \Rightarrow(\partial \sigma)^{4}
\end{aligned} \quad \Rightarrow \quad \frac{\mathcal{L}_{4}}{\mathcal{L}_{2}}\right|_{E \sim H} \sim \frac{H^{2} \sigma_{c}^{2}}{\Lambda_{U}^{4}} \sim \frac{H^{4}}{\Lambda_{U}^{4}} .
$$

- A remarkable Signature


## SuperSymmetric case

- Chiral Multiplet $\quad \Sigma \supset \sigma, \psi_{\sigma}$, with shift symmetry $K=\left(\Sigma+\Sigma^{\dagger}\right)^{2}$
- In dS, propagator modified at $\quad E \lesssim H$
- Because of week coupling, radiative corrections stop at $E \sim \lambda H \quad$ with $W=\lambda \Sigma^{3}$
- no relevant mass is generated
- Leading interaction $\lambda^{2} \operatorname{Im}(\sigma)^{4}$ with no $\operatorname{Im}(\sigma)^{3}$
- Another way to get detectable $\tau_{N L}^{\mathrm{loc}}$ and no $f_{N L}^{\text {loc }}$


## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | Dispersion |  | Type | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | Ab.s, non-Ab.s, S.* | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger}$, non-Ab. ${ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non- $\mathrm{Ab}, \mathrm{Ab} \cdot ._{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, S.* | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non-Ab. ${ }_{s}^{\star}$. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Iso. | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab.s}_{s}$, non-Ab.s, $\mathrm{S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{. s}$, non-Ab.s | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$. | X |

## Single Field

| Operator | Dispersion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!

## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | $w=c_{s} k \quad \omega \propto k^{2}$ |  | Type | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | Y |  | Ad., Iso. | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | Ab.s, non-Ab.s, S.* | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab} .{ }_{s}^{\dagger}$, non-Ab. ${ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, $\mathrm{Ab} \cdot{ }_{s}^{\dagger \star}$, non- $\mathrm{Ab} \cdot{ }_{s}^{\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non- $\mathrm{Ab}, \mathrm{Ab} \cdot ._{s}^{\dagger \star}$, non- $\mathrm{Ab} \cdot ._{s}^{\dagger \star}$, S.* | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non-Ab. ${ }_{s}^{\star}$. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Iso. | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{. s}$, non-Ab. ${ }_{s}, \mathrm{~S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non-Ab.s | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$. | X |

## Single Field

| Operator | Dispersion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!

## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | Dispersion Type |  |  | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=c$ | $w \propto k^{2}$ |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | X | $\checkmark$ | Ad., Iso. | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non- $\mathrm{Ab} \cdot{ }_{\cdot s}, \mathrm{~S} .{ }^{*}$ | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab} .{ }_{s}^{\dagger}$, non- $\mathrm{Ab} \cdot{ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, Ab. ${ }_{s}^{\dagger \star}$, non- $\mathrm{Ab}_{5}^{+\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, S. ${ }^{\star}$ | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non- Ab . ${ }_{s}^{\text {. }}$. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Iso. | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non-Ab.s $, \mathrm{S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab} \cdot{ }_{s}$, non- $\mathrm{Ab}_{\cdot s}$ | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab} ._{s}^{\dagger \dagger}$, non-Ab. ${ }_{s}^{\dagger \dagger}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$. | X |

## Single Field

| Operator | Dispersion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!

## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | Dispersion |  | Type | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | X |  | Ad., Iso.) | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Hu., Iso. | Ab., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | Ab.s, non-Ab.s, S.* | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger}$, non-Ab. ${ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non- $\mathrm{Ab}, \mathrm{Ab} \cdot ._{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, S.* | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non-Ab. ${ }_{s}^{\star}$. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Iso. | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab.s}_{s}$, non-Ab.s, $\mathrm{S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{s}$, non-Ab.s | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$. | X |

## Single Field

| Operator | Dispersion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!

## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | Dispersion |  | Type | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | Ab.c. nomiters, C * | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger}$, non-Ab. ${ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | noi, $\mathrm{Ab}, \mathrm{Ab} \cdot{ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non- $\mathrm{Ab}, \mathrm{ADF}_{s}^{*}$, morr A10. ${ }^{\text {a }}$, $\mathrm{S} .{ }^{*}$ | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non-Ab.*. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Iso. | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non-Ab. ${ }_{\text {c }}, \mathrm{S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non-Ab.s | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$. | X |

## Single Field

| Operator | Dispersion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!

## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | Dispersion |  | Type | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab ., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non- $\mathrm{Ab}_{\cdot s}, \mathrm{~S} .{ }^{*}$ | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab} .{ }_{s}^{\dagger}$, non- $\mathrm{Ab} .{ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non-Ab, Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, S.* | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non-Ab. ${ }_{s}$. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Iso. | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non-Ab.s, $\mathrm{S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab}_{\cdot s}$, non-Ab.s | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Iso. | $\mathrm{Ab} ._{s}^{+\star}$, non-Ab. ${ }_{s}^{\text {+ }}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Iso. | $\mathrm{Ab} .{ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\text {at }}$. | X |

## Single Field

| Operator | Dispersion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!

## New Signatures: new 3-point and 4-point functions

## MultiField

with M. Zaldarriaga 1009.2093 hep-th

| Operator | Dispersion |  | Type | Origin | Squeezed L. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $w=c_{s} k$ | $w \propto k^{2}$ |  |  |  |
| $\dot{\sigma}^{4}, \dot{\sigma}^{2}\left(\partial_{i} \sigma\right)^{2},\left(\partial_{i} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\left(\partial_{\mu} \sigma\right)^{4}$ | X |  | Ad., Iso. | Ab., non-Ab. |  |
| $\sigma^{4}$ | X | X | Ad., Iso. | Ab.s, non-Ab.s, S.* | X |
| $\dot{\sigma} \sigma^{3}$ | X | X | Ad., Iso. | $\mathrm{Ab} .{ }_{s}^{\dagger}$, non-Ab. ${ }_{s}^{\dagger}$. | X |
| $\sigma^{2} \dot{\sigma}^{2}, \sigma^{2}\left(\partial_{i} \sigma\right)^{2}$ | X | $\mathrm{X}^{\dagger \star}$ | Ad. ${ }^{\dagger \star}$, Iso. | non- $\mathrm{Ab}, \mathrm{Ab} \cdot{ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$, | X |
| $\sigma^{2}\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad. ${ }^{\dagger \star}$, Iso. | non- $\mathrm{Ab}, \mathrm{Ab} \cdot{ }_{s}^{\dagger \star}$, non- $\mathrm{Ab} ._{s}^{\dagger \star}$, S.* | X |
| $\sigma(\partial \sigma)^{3}$ | X |  | Iso. | non-Ab. ${ }_{\text {s }}$. | X |
| $\dot{\sigma}^{3}, \dot{\sigma}\left(\partial_{i} \sigma\right)^{2}$ | X |  | Ad., J | Ab., non-Ab. |  |
| $\dot{\sigma}\left(\partial_{i} \sigma\right)^{2}, \partial_{j}^{2} \sigma\left(\partial_{i} \sigma\right)^{2}$ |  | X | Ad., Is p . | Ab. |  |
| $\sigma^{3}$ | X | X | Ad., Is ). | $\mathrm{Ab}_{. s}$, non-Ab.s, $\mathrm{S}, \mathrm{R}$ | X |
| $\dot{\sigma} \sigma^{2}$ | X | X | Ad., Is . | $\mathrm{Ab}_{s}$, non-Ab.s | X |
| $\sigma \dot{\sigma}^{2}, \sigma\left(\partial_{i} \sigma\right)^{2}$ | X | X | Ad., Is | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$ | X |
| $\sigma\left(\partial_{\mu} \sigma\right)^{2}$ | X |  | Ad., Is | Ab. ${ }_{s}^{\dagger \star}$, non-Ab. ${ }_{s}^{\dagger \star}$. | X |

## Single Field

| Operator | Di persion |  | Squeezed L. |
| :---: | :---: | :---: | :---: |
|  | $w=c_{y} k$ | $w \propto k^{2}$ |  |
| $\dot{\pi}^{4}$ | X |  |  |
| $\left(\partial_{j}^{2} \pi\right)^{4}, \dot{\pi}\left(\partial_{j}^{2} \pi\right)^{3}, \ldots$ |  | X |  |
| $\dot{\pi}^{3}, \dot{\pi}\left(\partial_{i} \pi\right)^{2}$ | X |  |  |
| $\dot{\pi}\left(\partial_{i} \pi\right)^{2}, \partial_{j}^{2} \pi\left(\partial_{i} \pi\right)^{2}$ |  | X |  |

You can tell them apart!


Theory

- Adding Gauge Bosons and Fermions

Bartolo, Fasiello, Matarrese, Riotto 2010, 2010

- Higher derivative interactions in $\pi$, ex: $\left(\partial^{4} \pi\right)^{3} \quad \underset{2010}{\text { Creminelli, D'Amico, Norena, Trincherini }}$
with Behbahani, Mirbabayi
in progress
- Relaxing the shift-symmetry of $\pi$
with Dimarsky, Behbahani, Mirbabayi in progress
- Backreaction from additional Fields on $\pi$, EFT for thermal and trapped Inflat.

$$
S_{\text {int }}=-\int d^{4} x \mathcal{O}(x) \pi(x),
$$

with Nacir, Porto, and Zaldarriaga in progress

## Conclusions

## Inflation: Exploring the beginning of the Universe

- Many observational data, and many more to come

- Power Spectra: scalar and gravity waves
- Non-Gaussianities: Richness of information
- Smoking Gun
- Interactions


## Fundamental Theory



- Learning about the origin of the Universe and the high energy physics

$$
S_{\pi}=\int d^{4} x \sqrt{-g}\left[M_{\mathrm{Pl}}^{2} \dot{H}\left(\dot{\pi}^{2}-\left(\partial_{i} \pi\right)^{2}\right)+M_{2}^{4}\left(\dot{\pi}^{2}+\dot{\pi}^{3}-\dot{\pi}\left(\partial_{i} \pi\right)^{2}\right)-M_{3}^{4} \dot{\pi}^{3}+\ldots\right]
$$

